3,218 research outputs found

    Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence

    Full text link
    We study the tradeoff between computational effort and accuracy in a cascade of deep neural networks. During inference, early termination in the cascade is controlled by confidence levels derived directly from the softmax outputs of intermediate classifiers. The advantage of early termination is that classification is performed using less computation, thus adjusting the computational effort to the complexity of the input. Moreover, dynamic modification of confidence thresholds allow one to trade accuracy for computational effort without requiring retraining. Basing of early termination on softmax classifier outputs is justified by experimentation that demonstrates an almost linear relation between confidence levels in intermediate classifiers and accuracy. Our experimentation with architectures based on ResNet obtained the following results. (i) A speedup of 1.5 that sacrifices 1.4% accuracy with respect to the CIFAR-10 test set. (ii) A speedup of 1.19 that sacrifices 0.7% accuracy with respect to the CIFAR-100 test set. (iii) A speedup of 2.16 that sacrifices 1.4% accuracy with respect to the SVHN test set

    Contrôle de la chiralité axiale à l’aide d’arynes et en absence de métaux de transition

    Get PDF
    International audienceThe modular construction of enantioenriched biaryl derivatives is presented. This approach is based on (a) an almost quantitative access to polybrominated precursors via a transition metal-free aryl-aryl coupling, the ARYNE-coupling, (b) the regioselective introduction of a traceless chiral auxiliary (an enantiopure para-tolylsulfinyl group), (c) the chemoselective functionalization of this auxiliary and (d) subsequent regioselective functionalization of the remaining bromine atoms without any racemization during these steps. Next, the atropo-selective coupling of in situ generated arynes and aryllithiums bearing various chiral auxiliaries (tert-butylsulfoxide, para-tolylsulfoxide, tartrate-derived chiral diethers and oxazolines) is described and applied to the formal synthesis of (-)-steganacin. La construction modulaire de dérivés biaryliques énantioenrichis est présentée. Cette approche est basée sur (a) un accès quasi quantitatif aux précurseurs polybromés via un 2 couplage aryle-aryle sans métaux de transition, le couplage ARYNE, (b) l'introduction régiosélective d'un auxiliaire chiral (un groupe para-tolylsulfinyl énantiopur), (c) la fonctionnalisation chimiosélective de cet auxiliaire et (d) la fonctionnalisation régiosélective subséquente des atomes de brome restants sans racémisation au cours de ces étapes. Ensuite, le couplage atropo-sélectif à l'aide d'arynes générés in situ et d'aryllithiums portant divers auxiliaires chiraux (tert-butylsulfoxyde, para-tolylsulfoxide, diéthers dérivés du tartrate et des oxazolines chirales) est décrit et appliqué à la synthèse formelle de la (-)-stéganacine

    Accelerator Data Foundation : How it all fits together

    Get PDF
    Since 2003, a coherent data management approach was envisaged for the needs of installing, commissioning, operating and maintaining the LHC. Data repositories in the distinct domains of physical equipment, installed components, controls configuration and operational data have been established to cater for these different aspects. The interdependencies between the domains have been implemented as a distributed database. This approach, based on a very wide data foundation, has been used for the LHC and is being extended to the CERN accelerator complex

    Strong light-matter coupling in bulk GaN-microcavities with double dielectric mirrors fabricated by two different methods

    Get PDF
    Two routes for the fabrication of bulk GaN microcavities embedded between two dielectric mirrors are described, and the optical properties of the microcavities thus obtained are compared. In both cases, the GaN active layer is grown by molecular beam epitaxy on (111) Si, allowing use of selective etching to remove the substrate. In the first case, a three period Al0.2Ga0.8N / AlN Bragg mirror followed by a lambda/2 GaN cavity are grown directly on the Si. In the second case, a crack-free 2,mu m thick GaN layer is grown, and progressively thinned to a final thickness of lambda. Both devices work in the strong coupling regime at low temperature, as evidenced by angle-dependent reflectivity or transmission experiments. However, strong light-matter coupling in emission at room temperature is observed only for the second one. This is related to the poor optoelectronic quality of the active layer of the first device, due to its growth only 250 nm above the Si substrate and its related high defect density. The reflectivity spectra of the microcavities are well accounted for by using transfer matrix calculations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3477450

    Three-dimensional imaging and detection efficiency performance of orthogonal coplanar CZT strip detectors

    Get PDF
    We report on recent three-dimensional imaging performance and detection efficiency measurements obtained with 5 mm thick prototype CdZnTe detectors fabricated with orthogonal coplanar anode strips. In previous work, we have shown that detectors fabricated using this design achieve both very good energy resolution and sub-millimeter spatial resolution with fewer electronic channels than are required for pixel detectors. As electron-only devices, like pixel detectors, coplanar anode strip detectors can be fabricated in the thickness required to be effective imagers for photons with energies in excess of 500 keV. Unlike conventional double-sided strip detectors, the coplanar anode strip detectors require segmented contacts and signal processing electronics on only one surface. The signals can be processed to measure the total energy deposit and the photon interaction location in three dimensions. The measurements reported here provide a quantitative assessment of the detection capabilities of orthogonal coplanar anode strip detectors

    Saccharomyces cerevisiae-derived HBsAg preparations differ in their attachment to monocytes, immune-suppressive potential, and T-cell immunogenicity

    Get PDF
    Expression of the hepatitis B virus S protein results in the formation of a lipoprotein particle, the hepatitis B surface antigen (HBsAg). Such particles, produced in Saccharomyces cerevisiae, bind to the cell surface of monocytes through interaction with the lipopolysaccharide binding protein and the lipopolysaccharide receptor, CD14. This attachment is suggested to depend on the presence of charged phospholipids in the particles. In addition, such particles interfere with the lipopolysaccharide and interleukin-2-induced activation of monocytes. In the present study, it is reported that of three Saccharomyces cerevisiae-derived HBsAg preparations, two have a reduced capacity to bind to monocytes. A correlation with a reduced potential to inhibit the lipopolysaccharide-induced activation of monocytes and an increased potential to stimulate HBsAg-specific T-cell proliferation is observed. Surprisingly, differences in phospholipid content that might explain these observations, were not detected. (C) 2003 Wiley-Liss, In

    Magnetism: the Driving Force of Order in CoPt. A First-Principles Study

    Get PDF
    CoPt or FePt equiatomic alloys order according to the tetragonal L10 structure which favors their strong magnetic anisotropy. Conversely magnetism can influence chemical ordering. We present here {\it ab initio} calculations of the stability of the L10 and L12 structures of Co-Pt alloys in their paramagnetic and ferromagnetic states. They show that magnetism strongly reinforces the ordering tendencies in this system. A simple tight-binding analysis allows us to account for this behavior in terms of some pertinent parameters

    Multiscale nature of hysteretic phenomena: Application to CoPt-type magnets

    Get PDF
    We suggest a workable approach for the description of multiscale magnetization reversal phenomena in nanoscale magnets and apply it to CoPt-type alloys. We show that their hysteretic properties are governed by two effects originating at different length scales: a peculiar splitting of domain walls and their strong pinning at antiphase boundaries. We emphasize that such multiscale nature of hysteretic phenomena is a generic feature of nanoscale magnetic materials.Comment: 4 pages (revtex 4), 2 color EPS figure
    • …
    corecore